Selamat Datang Teman-Teman, Ibu/Bapak saudara sekalian .
terima kasih sudah mampir.. :)
Anda Sopan kami Segan :)

Jumat, 07 September 2012

Turbin Impuls Dan turbin Reaksi


Turbin Impuls

Turbin impuls adalah turbin yang mempunyai roda jalan atau rotor dimana terdapat sudu-sudu impuls. Sudu-sudu impuls mudah dikenali bentuknya, yaitu simetris dengan sudut masuk f dan sudut ke luar g yang sama (20 0), pada turbin biasanya ditempatkan pada bagian masuk dimana uap bertekanan tinggi dengan volume spesifik rendah. Bentuk turbin impuls pendek dengan penampang yang konstan. Ciri yang lain adalah secara termodinamika penurunan energi terbanyak pada nosel, dimana pada nosel terjadi proses ekspansi atau penuruan tekanan. Sudu-sudu turbin uap terdiri dari sudu tetap dan sudu gerak. Sudu tetap berfungsi sebagai nosel dengan energi kinetik yang naik, sedangkan pada sudu begerak tekanannya konstan atau tetap. Berdasarkan karakteristik tersebut, turbin impuls sering disebut turbin tekanan sama.
Bentuk dari sudu tetap turbin impuls ada dua macam yaitu bentuk simetris dan bentuk tidak simetris. Pada bentuk sudu tetap simetris, profil kecepatan dan tekanan adalah sama, tidak ada perubahan kecepatan dan tekanan. Sedangkan pada sudu tetap yang berfungsi sebagi nosel mempunyai bentuk seperti nosel, yaitu antar penampang sudu membetuk penampang yang menyempit pada ujungnya. Karena bentuknya nosel, kecepatan akan naik dan tekanan turun. Bentuk pertama simetri dipakai pada turbin uap Curtis dan bentuk yang kedua dipakai turbin uap Rateau.

D.1 Turbin impuls satu tahap ( Turbin De Laval)

Pada gambar 15.12 di atas adalah skema turbin De laval atau turbin impuls satu tahap. Turbin terdiri dari satu atau lebih nosel konvergen divergen dan sudu-sudu impuls terpasang pada roda jalan (rotor). Tidak semua nosel terkena semburan uap panas dari nosel, hanya sebagian saja. Pengontrolan putaran dengan jalan menutup satu atau lebih nosel konvergen divergen. Adapun cara kerjanya adalah sebagai berikut. Aliran uap panas masuk nosel konvergen divergen, di dalam nosel uap berekspansi sehingga tekanannya turun. Berbarengan dengan penurunan tekanan, kecepatan uap panas naik, hal ini berarti terjadi kenaikan energi kinetik uap panas. Setelah berekspansi, uap panas menyembur ke luar nosel dan menumbuk sudu-sudu impuls dengan kecepatan abolut Vs1. Pada sudu-sudu impuls uap panas memberikan sebagian energinya ke sudusudu, dan mengakibatkan sudu-sudu bergerak dengan kecepatan Vb. Tekanan pada sudu-sudu turbin adalah konstan atau tetap, sedangkan kecepatan uap ke luar sudu berkurang menjadi Vs2

D.2. Turbin impuls gabungan

Turbin impuls satu tahap atau turbin De laval mempunyai kendalakendala teknis yang tidak menguntungkan. Sebagai contoh, kecepatan uap masuk sudu terlalu tinggi kalau hanya untuk satu baris sudu, efeknya kecepatan putar sudu menjadi tinggi, dan melampaui batas keselamatan yang diizinkan, karena tegangan sentrifugal yang harus ditahan material rotor. Disamping itu dengan kecepatan rotor yang tinggi diperlukan roda gigi reduksi yang besar dan berat untuk menghubungkan rotor dengan generator listrik. Dengan alasan-alasan tersebut, dikembangkan dua pilihan turbin impuls gabungan yaitu turbin gabungan kecepatan atau turbin Curtiss dan turbin impuls gabungan tekanan atau turbin Rateau

D.2.1. Turbin impuls Curtiss

Turbin uap Curtiss adalah turbin yang bekerja dengan prinsip impuls secara bertahap. Berbeda dengan turbin satu tahap, turbin Curtiss mempunyai beberapa baris sudu bergerak dan baris sudu tetap. Pada gambar 15.13 adalah susunan turbin uap Curtiss, proses ekspansi uap panas pada nosel, dimana kecepatan uap panas naik ( Vs1) dan tekanan turun.
Uap panas yang mempunyai kecepatan tinggi masuk baris pertama sudu bergerak, pada tahap ini uap memberikan sebagian energinya sehingga kecepatannya turun (Vs2). Selanjutnya, sebelum masuk baris sudu bergerak tahap II, terlebih dahulu melewati sudu tetap. Pada sudusudu tetap yang berbentuk simetris, uap tidak kehilangan energinya, kecepatan (Vs3) dan tekanannya konstan. Uap dengan kecepatan Vs3 setelah melewati sudu tetap masuk baris sudu bergerak tahap II, uap memberikan energinya yang tersisa ke sudu-sudu bergerak, karena itu kecepatannya turun kembali menjadi Vs4.

Pada turbin Curtiss penurunan uap terjadi dengan sempurna pada nosel sehingga tidak ada penurunan tekanan lagi pada sudu-sudu, dan energi kinetik dari nosel dipakai oleh dua baris sudu bergerak tidak hanya satu baris saja. Ciri khas dari turbin ini adalah kecepatan akan turun setelah melewati sudu bergerak, dan kecepatannya konstan pada sudu tetap. Untuk memahami lebih lanjut tentang perubahan nilai kecepatan, dapat menggunakan analisis segitiga kecepatan dari turbin Curtiss. Sebagai contoh dapat dilihat pada gambar 15.14.

D.2.2. Turbin impuls Rateau

Pada turbin Curtiss yaitu turbin gabungan kecepatan yang sudah dibahas pada sub-bab di atas, masih mempunyai kelemahan yaitu kecepatan uapnya masih tinggi, sehingga timbul gesekan yang merupakan kerugian aliran. Kondisi ini sama dengan turbin impuls satu tahap. Untuk mengatasi hal tersebut, Rateau membuat turbin impuls gabungan tekanan. Pada turbin ini, turbin dibagi menjadi beberapa bagian dengan susunan seri, dimana setiap bagian terdiri dari nosel dan sudu bergerak, yaitu sama dengan susunan turbin satu tahap.
Gambar 15.15 adalah skema sederhana dari turbin Rateau. Dari gambar tersebut didapat susunan dasar turbin, yaitu terdiri dari dua bagian kombinasi nosel dan sudu bergerak. Dari diagram tekanan dan kecepatan absolut dapat dibahas sebagai berikut. Uap panas pertama masuk pada bagian pertama, kecepatan akan naik pada nosel dan kemudian turun pada sudu bergerak. Selanjutnya, uap panas masuk ke nosel bagian dua, kecepatan naik lagi pada nosel dan turun kembali pada sudu bergerak. Pada setiap bagian, uap akan mengalami penurunan tekanan setelah dari nosel.
Jadi pada turbin Rateau, uap panas akan berekspansi setiap masuk nosel, dengan demikian energi uap akan terbagi merata. Jika dibandingkan dengan turbin satu tahap, pada turbin ini jumlah energi uap panas yang berekspansi per noselnya jauh lebih kecil, sehingga kenaikan kecepatan absolutnya tidak terlalu tinggi.
Turbin ini mempunyai keunggulan yaitu kecepatan sudunya rendah, kecepatan uap rendah (gesekan kecil), dan distribusi kerja per bagian merata. Kelemahannya adalah penurunan tekanan yang terus menerus pada setiap bagian, sehingga resiko kebocoran uap lebih besar. Untuk memperoleh efisiensi tinggi, turbin Rateau juga harus mempunyai tahapan yang banyak. Dengan alasan-alasan tersebut, turbin Rateau banyak dipakai untuk unit yang besar, dimana efisiensi lebih penting daripada biaya investasi.
Pada gambar adalah contoh segitiga kecepatan dari turbin Rateau.
Berdasarkan segitiga tersebut terlihat bahwa bentuk dari segitiga adalah sama untuk setiap tahap, dimana bentuknya adalah segitiga kecepatan turbin satu tahap yang disusun seri. Kecepatan Vs1 dari sudu tetap yang berfungsi nosel, akan masuk ke sudu bergerak dan nilainya turun menjadi Vs2, demikian juga untuk kecepatan relatifnya juga turun. Kemudian,
kecepatan Vs2 naik lagi setelah melewati sudu bergerak menjadi Vs3, dimana nilai kecepatan ini secara ideal adalah sama dengan Vs1, dan prosesnya berlanjut sampai tahap terakhir turbin.

E. Turbin Reaksi

Turbin reaksi pertama kali dikenalkan oleh Parson. Gambar 15.17 adalah contoh turbin rekasi tiga tahap, terdiri dari 3 baris sudu tetap ada  3 baris sudu bergerak. Sudu tetap dibuat sedemikian rupa sehingga fungsinya sama dengan nosel. Sedangkan sudu bergerak dapat dibedakan dengan jelas dengan sudu impuls karena tidak simetris. Sudu bergerak pun difungsikan sebagai nosel, karena fungsinya yang sama dengan sudu tetap, maka bentuknya sama dengan sudu tetap, tetapi arah lengkungannya berlawanan.

Penurunan tekanan adalah sinambung dari tahap satu ke tahap berikutnya, dari sudu tetap dan sudu bergerak. Kecepatan absolutnya setiap melewati sudu tetap akan naik dan setelah melewati sudu bergerak akan turun, selanjutnya akan berulang sampai akhir tahap. Pada gambar 15.18 adalah contoh segitiga kecepatan dari turbin rekasi dua tahap. Dari gambar segitiga kecepatan tersebut menunjukkan bentuk segitiga kecepatan untuk sudu tetap akan sama, demikian juga untuk sudu gerak. Kecepatan Vs1 dari sudu tetap akan turun nilainya
setelah melwati sudu bergerak menjadi Vs2,akan tetapi kecepatan relatinya menjadi besar yaitu Vr2. Selanjutnya, Vs2 dinaikan lagi nilainya setelah masuk ke sudu tetap, menjadi Vs3 yang sama dengan Vs1, dan seterusnya sampai tahap akhir turbin.






Tidak ada komentar:

Posting Komentar